Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Host Plant Strategies to Combat Against Viruses Effector Proteins.

Identifieur interne : 000141 ( Main/Exploration ); précédent : 000140; suivant : 000142

Host Plant Strategies to Combat Against Viruses Effector Proteins.

Auteurs : Avinash Marwal [Inde] ; Rajarshi Kumar Gaur [Inde]

Source :

RBID : pubmed:33093803

Abstract

Viruses are obligate parasites that exist in an inactive state until they enter the host body. Upon entry, viruses become active and start replicating by using the host cell machinery. All plant viruses can augment their transmission, thus powering their detrimental effects on the host plant. To diminish infection and diseases caused by viruses, the plant has a defence mechanism known as pathogenesis-related biochemicals, which are metabolites and proteins. Proteins that ultimately prevent pathogenic diseases are called R proteins. Several plant R genes (that confirm resistance) and avirulence protein (Avr) (pathogen Avr gene-encoded proteins [effector/elicitor proteins involved in pathogenicity]) molecules have been identified. The recognition of such a factor results in the plant defence mechanism. During plant viral infection, the replication and expression of a viral molecule lead to a series of a hypersensitive response (HR) and affect the host plant's immunity (pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity). Avr protein renders the host RNA silencing mechanism and its innate immunity, chiefly known as silencing suppressors towards the plant defensive machinery. This is a strong reply to the plant defensive machinery by harmful plant viruses. In this review, we describe the plant pathogen resistance protein and how these proteins regulate host immunity during plant-virus interactions. Furthermore, we have discussed regarding ribosome-inactivating proteins, ubiquitin proteasome system, translation repression (nuclear shuttle protein interacting kinase 1), DNA methylation, dominant resistance genes, and autophagy-mediated protein degradation, which are crucial in antiviral defences.

DOI: 10.2174/1389202921999200712135131
PubMed: 33093803
PubMed Central: PMC7536791


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Host Plant Strategies to Combat Against Viruses Effector Proteins.</title>
<author>
<name sortKey="Marwal, Avinash" sort="Marwal, Avinash" uniqKey="Marwal A" first="Avinash" last="Marwal">Avinash Marwal</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; 2Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>1Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; 2Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009</wicri:regionArea>
<wicri:noRegion>Uttar Pradesh - 273009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gaur, Rajarshi Kumar" sort="Gaur, Rajarshi Kumar" uniqKey="Gaur R" first="Rajarshi Kumar" last="Gaur">Rajarshi Kumar Gaur</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; 2Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>1Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; 2Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009</wicri:regionArea>
<wicri:noRegion>Uttar Pradesh - 273009</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33093803</idno>
<idno type="pmid">33093803</idno>
<idno type="doi">10.2174/1389202921999200712135131</idno>
<idno type="pmc">PMC7536791</idno>
<idno type="wicri:Area/Main/Corpus">000049</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000049</idno>
<idno type="wicri:Area/Main/Curation">000049</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000049</idno>
<idno type="wicri:Area/Main/Exploration">000049</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Host Plant Strategies to Combat Against Viruses Effector Proteins.</title>
<author>
<name sortKey="Marwal, Avinash" sort="Marwal, Avinash" uniqKey="Marwal A" first="Avinash" last="Marwal">Avinash Marwal</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; 2Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>1Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; 2Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009</wicri:regionArea>
<wicri:noRegion>Uttar Pradesh - 273009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gaur, Rajarshi Kumar" sort="Gaur, Rajarshi Kumar" uniqKey="Gaur R" first="Rajarshi Kumar" last="Gaur">Rajarshi Kumar Gaur</name>
<affiliation wicri:level="1">
<nlm:affiliation>1Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; 2Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>1Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; 2Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009</wicri:regionArea>
<wicri:noRegion>Uttar Pradesh - 273009</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current genomics</title>
<idno type="ISSN">1389-2029</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Viruses are obligate parasites that exist in an inactive state until they enter the host body. Upon entry, viruses become active and start replicating by using the host cell machinery. All plant viruses can augment their transmission, thus powering their detrimental effects on the host plant. To diminish infection and diseases caused by viruses, the plant has a defence mechanism known as pathogenesis-related biochemicals, which are metabolites and proteins. Proteins that ultimately prevent pathogenic diseases are called R proteins. Several plant R genes (that confirm resistance) and avirulence protein (Avr) (pathogen Avr gene-encoded proteins [effector/elicitor proteins involved in pathogenicity]) molecules have been identified. The recognition of such a factor results in the plant defence mechanism. During plant viral infection, the replication and expression of a viral molecule lead to a series of a hypersensitive response (HR) and affect the host plant's immunity (pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity). Avr protein renders the host RNA silencing mechanism and its innate immunity, chiefly known as silencing suppressors towards the plant defensive machinery. This is a strong reply to the plant defensive machinery by harmful plant viruses. In this review, we describe the plant pathogen resistance protein and how these proteins regulate host immunity during plant-virus interactions. Furthermore, we have discussed regarding ribosome-inactivating proteins, ubiquitin proteasome system, translation repression (nuclear shuttle protein interacting kinase 1), DNA methylation, dominant resistance genes, and autophagy-mediated protein degradation, which are crucial in antiviral defences.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33093803</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1389-2029</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>21</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Current genomics</Title>
<ISOAbbreviation>Curr Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Host Plant Strategies to Combat Against Viruses Effector Proteins.</ArticleTitle>
<Pagination>
<MedlinePgn>401-410</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.2174/1389202921999200712135131</ELocationID>
<Abstract>
<AbstractText>Viruses are obligate parasites that exist in an inactive state until they enter the host body. Upon entry, viruses become active and start replicating by using the host cell machinery. All plant viruses can augment their transmission, thus powering their detrimental effects on the host plant. To diminish infection and diseases caused by viruses, the plant has a defence mechanism known as pathogenesis-related biochemicals, which are metabolites and proteins. Proteins that ultimately prevent pathogenic diseases are called R proteins. Several plant R genes (that confirm resistance) and avirulence protein (Avr) (pathogen Avr gene-encoded proteins [effector/elicitor proteins involved in pathogenicity]) molecules have been identified. The recognition of such a factor results in the plant defence mechanism. During plant viral infection, the replication and expression of a viral molecule lead to a series of a hypersensitive response (HR) and affect the host plant's immunity (pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity). Avr protein renders the host RNA silencing mechanism and its innate immunity, chiefly known as silencing suppressors towards the plant defensive machinery. This is a strong reply to the plant defensive machinery by harmful plant viruses. In this review, we describe the plant pathogen resistance protein and how these proteins regulate host immunity during plant-virus interactions. Furthermore, we have discussed regarding ribosome-inactivating proteins, ubiquitin proteasome system, translation repression (nuclear shuttle protein interacting kinase 1), DNA methylation, dominant resistance genes, and autophagy-mediated protein degradation, which are crucial in antiviral defences.</AbstractText>
<CopyrightInformation>© 2020 Bentham Science Publishers.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Marwal</LastName>
<ForeName>Avinash</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>1Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; 2Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gaur</LastName>
<ForeName>Rajarshi Kumar</ForeName>
<Initials>RK</Initials>
<AffiliationInfo>
<Affiliation>1Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; 2Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United Arab Emirates</Country>
<MedlineTA>Curr Genomics</MedlineTA>
<NlmUniqueID>100960527</NlmUniqueID>
<ISSNLinking>1389-2029</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Avirulence Protein (AVR)</Keyword>
<Keyword MajorTopicYN="N">PAMPs (Pathogen Associated Molecular Patterns)</Keyword>
<Keyword MajorTopicYN="N">PTGS (Post Transcriptional Gene Silencing)</Keyword>
<Keyword MajorTopicYN="N">RNA silencing</Keyword>
<Keyword MajorTopicYN="N">innate immunity</Keyword>
<Keyword MajorTopicYN="N">plant defense</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>5</Hour>
<Minute>57</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33093803</ArticleId>
<ArticleId IdType="doi">10.2174/1389202921999200712135131</ArticleId>
<ArticleId IdType="pii">CG-21-401</ArticleId>
<ArticleId IdType="pmc">PMC7536791</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2000 Oct 6;290(5489):142-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11021800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 Dec;12(9):938-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22017770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2008;442:187-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18369787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2017 Sep 1;5(1):104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28859671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2017 Nov 14;56(45):5980-5990</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29064680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2018 Jun 25;18(1):132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29940871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2017 May;59(5):336-344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28304135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2000 Nov;71(1-2):161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:43-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19007329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 May;89(10):5714-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25762742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2017 Feb;36(2):327-341</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27904946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2019 Oct 24;15:118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31666804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Dec;86(24):13729-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23055564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Feb;213(3):1346-1362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27699793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2014 Oct 15;3(4):458-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27135514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2014 Sep;33(9):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24828329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicon. 2013 Jun 1;67:12-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23462379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2018 Feb;30(2):285-299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29382771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2019 Jul;103(7):1507-1514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31025904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Apr 16;20(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30995767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2019 Jan 17;93(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30429349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Nov 28;11(11):e0166938</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27893781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jun;7(6):705-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7647562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2014 Nov;228:135-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25438794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2017 Aug;38:92-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28511115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2019 Mar;42(3):904-917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30151921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2019 Feb 13;7:e6297</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30783563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2018 Nov 21;10(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30469406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2018 Jan 31;84(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29180363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Mar 06;9:145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29563918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2009 Dec;20(9):1025-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19540353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2364-2373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30674663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(3):501-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2015 Jan;160(1):17-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25430908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Sep 30;7:1449</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27746794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2007;45:221-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17417941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2019 Feb 4;12(2):248-262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30639751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Sep;18(9):522-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23790252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2018 Feb 1;10(2):657-666</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29325030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2016 Apr;17:32-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26800310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Sep;78(17):9487-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Aug;3(4):315-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioengineered. 2017 May 4;8(3):274-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28581909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 16;8:1072</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28670324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biotechnol Equip. 2014 May 4;28(3):408-416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26019527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(10):e1003683</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24098128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Oct;76(20):6787-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2006 Nov;7(11):1168-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17039251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2018 Jul 2;252:82-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29753892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2005 Apr;16(2):118-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 2019 Jun;39(4):587-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30947560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Mar 15;9(1):4627</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30874591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Dec 29;2:100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Nov;11(11):777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24100361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2015 Feb 10;7(2):634-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25674769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2019 Sep;191(1):113-125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31342255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Nov;181(3):1295-1313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31431512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Mar;19(3):744-763</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28371183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2001 Nov 1;2(6):355-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Mar;85(6):2980-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21191016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2018 Apr 2;249:8-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29510173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2003 Dec;67(4):657-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14665679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Oct;17(8):1276-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27103354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rice (N Y). 2016 Dec;9(1):5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26892000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15805-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15505199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2019 Jan 14;8(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30646631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2018 Apr 6;498(3):395-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29407169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Nov;16(11):1918-1927</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29604159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2019;1991:1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31041757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2017 Jun;98(6):1526-1536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28635588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2015 Apr;16(4):426-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25729922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pineal Res. 2018 Oct;65(3):e12511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29786865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Apr 23;47(7):3795-3810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30788511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2017 Nov;254(6):2055-2070</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28540512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Sep;17(7):1140-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26808139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2019 Feb 28;11(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30823402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 May 1;10(5):764-766</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27964999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):803-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D708-D717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29040670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2006 Apr;8(5):1372-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16697674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2015;53:45-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25938276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2914-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19773385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Apr 30;520(7549):679-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25707794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Mar;11(3):142-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16473542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Jul;25(7):862-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22414439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Nov;6(11):527-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(12):e1004015</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24348271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Dec 15;20(24):3407-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2016 Jul;34(7):523-525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27113633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jun;38(5):850-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15144385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2013 Jun;38(2):433-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23660678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Mar 28;9(1):1268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29593293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2010 Feb;19(1):45-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19548101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 2015 Feb;50(1):160-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25315633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:299-334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21370976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Apr;8(2):216-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15753004</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Marwal, Avinash" sort="Marwal, Avinash" uniqKey="Marwal A" first="Avinash" last="Marwal">Avinash Marwal</name>
</noRegion>
<name sortKey="Gaur, Rajarshi Kumar" sort="Gaur, Rajarshi Kumar" uniqKey="Gaur R" first="Rajarshi Kumar" last="Gaur">Rajarshi Kumar Gaur</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000141 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000141 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33093803
   |texte=   Host Plant Strategies to Combat Against Viruses Effector Proteins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33093803" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020